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We reinvestigate thintermittent synchronizatiophenomenon of coupled chaotic pendula that has recently
been a controversy. We propose a simple numerical scheme by which one can easily determine whether the
observed synchronization is a numerical artifact of computer analysis or not. By using this scheme, for certain
coupling strength regime, we find that the average time taken for synchronitaté@mly depends on the
precision of calculations. According to Longa al’s criterion for synchronization, this implies that the ob-
served synchronization is genuine.
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Synchronization of coupled chaotic systems is one of thesynchronization threshol®]. In another comment, Muruga-
most intriguing aspects of chaotic dynamics. It has been exaandamet al. [10] claimed that there exists some specific
tensively studied because of its potential importance in pracranges of coupling strength for which persistent synchroni-
tical applications, e.g., secure communications, nonlinear dyzation can occur, by numerical analysis of the conditional
namical model verificatiofil], etc. Lyapunov exponent. They also claimed that the conditional

Since the pioneering workg®] of Fujisaka and Yamada, Lyapunov exponent plays an important role in distinguishing
Afraimovich et al, and Pecora and Carroll, various synchro-between intermittent and permanent synchronization. How-
nization schemes have been proposed. In some of thosever, as BBS replied ifll], quantifying the condition for
there have been controversies whether the observed syn- Synchronization is a very subtle subject. BBS tested several
chronization is accidental or genuine, i.e., whether it is anpossible candidates for a measure of the condition of syn-
artifact of finite precision of numerical calculations or not chronization. Among them are included Lyapunov function
The first of those controversies was raised by Maritan an@nd the largest eigenvalue of the Jacobian of the flow. How-
Banavar(MB) [3]. They mistakenly claimed that two identi- €ver, it has been reported theoretically, and observed in nu-
cal logistic maps coupled by common noise can be synchromerical and physical experiments, that a simple calculation
nized for appropriate coupling strengths. Pikovskg]  of these quantities is insufficient for the prediction of syn-
pointed out that what they observed was an accidental syr¢hronization[12,13.
chronization, since the maximal Lyapunov exponent of the Our motivation for this study is to explicitly clarify the
system is positive. Later, Longgt al. [5] explicitly showed controversy on intermittent synchronization. In this Rapid
that MB’s synchronization is indeed a numerical artifact. Communication, we propose a simple numerical scheme to
They proposed a very useful criterion for chaos synchronidetermine whether the observed synchronization is acciden-
zation, which is that the average number of iterations taket@l or genuine. With the help of this scheme, we are able to
for genuine synchronizatiolinearly depends on the preci- investigate the difference dynamics of unidirectionally
sion of calculations, whereas the accidental synchronizatioaoupled pendula up to the 18 order.
exponentiallydepends on the precision of calculations. The motion of the master and the slave pendula are de-

Recently, Baker, Blackburn, and SmiBBS) [6] reported  scribed in a dimensionless form by the usual nonautonomous
another controversial model for chaos synchronization. Thegxpression in the angular coordinaigs, 6s:
studied chaotic flows of unidirectionally coupled pendula, . .
which also serve as a model for the Josephson junction. O+ yOmtsindy,=1gcogOt), 1)
Their claim was that the apparent complete synchronization )
of the system is a numerical artifact of computer analysis and 605 + y6s +sinfs =I'gcogQt)+c(sinfs—sinby,),
that intermittent synchronization is a plausible behavilor.
their numerical study, they randomly scrambled title deci- ~ Where timet has been normalized in the unit af; *, g
mal digits in the variable to prevent accidental synchronizabeing the small-angle resonant frequency of the pendujum,
tion, which is effectively equivalent to the addition of small is the damping coefficient, is the amplitude of modula-
noise. After BBS’s report, Grassbergéf] commented that tions normalized by the pendulum critical torquegl, the
there is a genuine transition threshold coupling strength, adrive frequency() is expressed in units aby, andc is the
which the maximal Lyapunov exponent of the linearized dif-coupling strength. These nonautonomous equations can be
ference motion between the master and slave system bwwitten as equivalent sets of autonomous coupled first-order
comes 0, and that the intermittent synchronization BBS obdifferential equations as follows:
served is nothing other tham-off intermittency 8] near the _

Om=om,
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All the results that are presented in this paper were computed 0.0 , , ‘ ,
with the same parameter values that were used in BBS's 075 08 08 09 095 1
study, i.e.,y=0.2, I';=1.2, andQ)=0.5. Both the master ¢

and the slave pendula are in a chaotic state in those param- g 1. The TLEv is plotted against the coupling strength
eter values. Numerical results are obtained with a fourth{sojid line). The filled circles represent the average decay rates of
order Runge-Kutta routine with time grids of 0.00k/Z2).  ys time for whichc is in the negative TLE regime, which well
When synchronization is achieved, the strange attractor fogpproximates the TLEFig. 2(d)].

the slave exactly coincides with that of the master, and the

synchronization manifoldM can be represented a9,

0, 0= g, b= by). In the absence of synchronization, and the difference dynamics, i.e., E48) and (4) whose

the Poincareoints move on the two atiractors in an uncor- dynamics is identical to that of the original set of equations.
P In order to compare the conventional method with our

related fashion. To measure the quality of synchronlzatlonsCheme' we first calculate the transverse Lyapunov exponent

e o e areeFLE) b tuyng th Inearized equatons of €4, Figure
P gp P shows that the presence of the parameter regime, i.e.,

space, such ag={(6s— 6m)°+ (65— 6m) } % . 0.795<c<1.0, in which the TLE is slightly negative. The
The conventional procedure for studies of numerical syn g changes sign near=0.795. So we choose two param-
chronization of coupled flows is as follow§) Integrate siX-  oter values. i.ec=0.79 in which the TLE is slightly positive
dimensional differential equatiorigs. (2) and (3)] with  5,4c=0.80 in which the TLE is slightly negative, as our test
fourth order Runge-Kutta algorithniii) Calculatey to de-  yaiyes. Then, we calculate the time series;dbr these two

termine the degree of synchronization. A drawback of thigyarameter values both in the conventional method and in our
conventional procedure is the phenomenon of hard lockingcheme to compare the results.

when # is within the precision limit of the calculation. In Figure 2 shows the striking difference between the con-
order to avoid this difficulty, a small noise in the order of the yentional method and our scheme. According to the conven-
precision of the computer, i.e., seven digits for single preciyiona| calculations[Figs. 2a) and (b)], the measurey

sion or 15 digits for double precision, is usually added toapptiy goes to zero as the difference becomes less than 15
each variable at every Runge-Kutta step to perform the nugjgits, whether the TLE is slightly positive far=0.79[Fig.

merical study. However, the true dynamics of the system €aBa)] or slightly negative foc=0.80.[See Fig. 2v).] On the
be perturbed by this small added noise.

Here, we propose to study an equivalent set of equations,
by transforming the slave equations to the equations of dif-
ference motion between the master and the slave to circum _
vent the hard locking problem, instead of adding noise. The%

(o]
(o]

transformation of the variableg)=0,,— 05, w=w,— s,
and ¢= ¢,,— ¢ leads to the equations of difference motion
between the master and the slave as follows:
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(f)=0. _40 . /I ﬂ | /1 gl

o 1000 2000 3000 0 50 100 150 200
Time Time

Then, the synchronization manifoldd corresponds to
(0,w,4)=(0,0,0) and the coordinates are taken in a direc- FiG. 2. Time series ofy in log scale. The figures show the
tion orthogonal tdV. Notice that the transformation from the striking difference between results from the conventional calcula-
variables  @n,wm,bm,.0s,0s,¢s) 1o the variables tions(a) and(b) and the calculation from our schen@ and (d).
(6m,®m,dm,0,0,¢) is a homeomorphismWe can solve The coupling strength foa) and(c) is c=0.79 and(b) and(d) is
six-dimensional differential equations of the master systent=0.80.
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FIG. 3. The average time taken for synchronization vs the pre-
cision of calculations foc=0.79 (filled circle) andc=0.80 (open FIG. 4. The effects of added noise with varying amplitude in log
circle, insel. The solid line is the best fitted exponential curve.  scale.(@) The amplitudes of added noise are of the order of'£f)

10 2°C and 10 3% respectively, from top to bottom. Once the dy-
other hand, the calculations from our schefigs. Zc) and  namics reaches the order of noise level, the dynamics occasionally
2(d)] show that the dynamics can be studied until the mearebounds up to the order of ¥atimes in this system(b) MMRT
sure » reaches up to the order of 188 [14]. Figure 2c)  When a noise of an amplitude of 18°is added for 0.8&¢c<1.0.
shows the time series af lasts much longer than in Fig.

2(a), until it accidentally becomes less than 26 for the  effects of small additive noise on the system, since BBS
coupling strengtit=0.79. This indicates the synchronization effectively added a small noise in their study. In order to
observed in Fig. @) is an accidental one. On the contrary, investigate, we add noises of the order of ¥, 107%%° and
the » in Fig. 2d) shows a consistent decreasing tendency10 3*°to the dynamics of difference motion of coupled cha-
i.e., exponential decay, as time goes on. It can be understoadic pendula for the coupling strength+0.80. Remember
that the observed synchronization in FigbR by the con-  that actual synchronization is possible tor 0.80. The typi-
ventional method, is a genuine one. Moreover, in Figl),2 cal behavior of the system is shown in Figay4 Once the
we can estimate the TLE by measuring the average slope afynamics reaches the order of noise level, the dynamics oc-
the decay. The filled circles in Fig. 1. show the average decagasionally rebounds up to the order off4@mes. This indi-
rate (the slope ofv versus timg which well approximates cates that the system could show intermittent bursts, no mat-
the TLE, asc varies. ter how small a noise is added. So we investigate the
As we mentioned previously, Long# al’s criterion give  maximum bouncing height versus the coupling strermily
good estimates for synchronization of coupled maps. Howfunning the calculation up to 10n a normalized time unit
ever, the calculation for coupled chaotic flows by using symwhen the added noise is of the amplitude of 1. The
bolic languages like Mathematica or Maple packages takegesult is shown in Fig. @) that represents the magnitude of
an extremely long time. So the calculation of the averageghe maximum rebounding of the trajectotfIMRT) for a
time taken for synchronization versus precision is practicallygiven noise amplitude, e.g., the applied noise of amplitude
infeasible when we use symbolic packagéiscan be calcu- 10 ' can lead to MMRT of the order 13“, for c=0.8.
lated with the algorithm in Ref16] within single and double [See Fig. 4b)]. This is the crucial difference between
precision calculations In our scheme, on the other hand, it coupled pendula and coupled logistic maps in which syn-
can be easily estimated. In Fig(c2 we can measure the chronization is achieved, regardless of additive noise in cer-
time intervals of two adjacently located instant of time attain coupling strength regime. In case of coupled chaotic
which log,¢( %7) reaches to the given didii5] in time series pendula, however, small added noises can have a big impact
of logio(7), €.9., the arrows in Fig. (2) point logo(7) on their dynamics. This is the difficulty one can have in
reaches the dotted line, i.e., 30th digit. By taking an averagéreating BBS type of systems.
of these time intervals, we can easily obtain the relation be- Finally, we would like to comment that our scheme can be
tween average synchronization time and precision. Figure 8pplied not only to coupled pendula, but also to generic
shows the results of thexponentiarelation forc=0.79 and coupled chaotic oscillators like Lorenz, &ger, Duffing,
the linear relation for c=0.80. So, according to Longa forced Brusselator, etc. As an example, we show the result of
et al’s criterion,we can conclude that the observed synchro-coupled Duffing oscillators in Fig. 5.
nization for0.80<c<1.0in BBS's pendula is genuine syn-  In conclusion, we have clarified the controversies con-
chronization. cerned with BBS'’s system by proposing a scheme to calcu-
So far, we have illustrated that our scheme has varioukate the dynamics of coupled chaotic flows. The scheme pro-
advantages over the conventional method for distinguishingides a very simple way to test whether the observed
the synchronizations. Even though we have concluded thatynchronization is genuine or accidental. Using this scheme
coupled chaotic pendula can actually be synchronized fowe are also able to study the effects of a small added noise
certain coupling strength regimes, the question that smaldn synchronization. Our results show tltlagre exists a cer-
additive noise might lead large intermittent bursts still re-tain parameter interval in which the coupled pendula system
mains. This question motivates us to study the numericais actually synchronizedlhis conclusion is based on Longa
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FIG. 5. Time series of; in log scale for uni-
directionally coupled Duffing oscillators that are
given by the following equationsx+ 0.25— X
+x3=0.3cos and X' +0.25 —x'+x'3
=0.3cod+c(x—x'), where c is the coupling
strength.(a) For c= —0.755, logyn bursts inter-
mittently. (b) For c=—0.770, logyn decreases
consistently.
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BBS’s claim, we have also observed that BBS’s system i%ou led chaotic flows. as well as in couoled mans
very sensitive to small additive noises, i.e., an extremely P ' P pS.
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