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Reconsideration of intermittent synchronization in coupled chaotic pendula

Sunghwan Rim,1 Myung-Woon Kim,1,2 Dong-Uk Hwang,1,2 Young-Jai Park,2 and Chil-Min Kim1,*
1National Creative Research Initiative Center for Controlling Optical Chaos, Pai-Chai University, Daejeon 302-735, Korea

2Department of Physics, Sogang University, Seoul 121-742, Korea
~Received 24 May 2001; revised manuscript received 24 August 2001; published 20 November 2001!

We reinvestigate theintermittent synchronizationphenomenon of coupled chaotic pendula that has recently
been a controversy. We propose a simple numerical scheme by which one can easily determine whether the
observed synchronization is a numerical artifact of computer analysis or not. By using this scheme, for certain
coupling strength regime, we find that the average time taken for synchronizationlinearly depends on the
precision of calculations. According to Longaet al.’s criterion for synchronization, this implies that the ob-
served synchronization is genuine.
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Synchronization of coupled chaotic systems is one of
most intriguing aspects of chaotic dynamics. It has been
tensively studied because of its potential importance in p
tical applications, e.g., secure communications, nonlinear
namical model verification@1#, etc.

Since the pioneering works@2# of Fujisaka and Yamada
Afraimovich et al., and Pecora and Carroll, various synchr
nization schemes have been proposed. In some of th
there have been controversies onwhether the observed syn
chronization is accidental or genuine, i.e., whether it is
artifact of finite precision of numerical calculations or no.
The first of those controversies was raised by Maritan
Banavar~MB! @3#. They mistakenly claimed that two ident
cal logistic maps coupled by common noise can be sync
nized for appropriate coupling strengths. Pikovsky@4#
pointed out that what they observed was an accidental
chronization, since the maximal Lyapunov exponent of
system is positive. Later, Longaet al. @5# explicitly showed
that MB’s synchronization is indeed a numerical artifa
They proposed a very useful criterion for chaos synchro
zation, which is that the average number of iterations ta
for genuine synchronizationlinearly depends on the preci
sion of calculations, whereas the accidental synchroniza
exponentiallydepends on the precision of calculations.

Recently, Baker, Blackburn, and Smith~BBS! @6# reported
another controversial model for chaos synchronization. T
studied chaotic flows of unidirectionally coupled pendu
which also serve as a model for the Josephson junct
Their claim was that the apparent complete synchroniza
of the system is a numerical artifact of computer analysis
that intermittent synchronization is a plausible behavior.In
their numerical study, they randomly scrambled thenth deci-
mal digits in the variable to prevent accidental synchroni
tion, which is effectively equivalent to the addition of sma
noise. After BBS’s report, Grassberger@7# commented that
there is a genuine transition threshold coupling strength
which the maximal Lyapunov exponent of the linearized d
ference motion between the master and slave system
comes 0, and that the intermittent synchronization BBS
served is nothing other thanon-off intermittency@8# near the
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synchronization threshold@9#. In another comment, Muruga
nandamet al. @10# claimed that there exists some speci
ranges of coupling strength for which persistent synchro
zation can occur, by numerical analysis of the conditio
Lyapunov exponent. They also claimed that the conditio
Lyapunov exponent plays an important role in distinguish
between intermittent and permanent synchronization. Ho
ever, as BBS replied in@11#, quantifying the condition for
synchronization is a very subtle subject. BBS tested sev
possible candidates for a measure of the condition of s
chronization. Among them are included Lyapunov functi
and the largest eigenvalue of the Jacobian of the flow. Ho
ever, it has been reported theoretically, and observed in
merical and physical experiments, that a simple calculat
of these quantities is insufficient for the prediction of sy
chronization@12,13#.

Our motivation for this study is to explicitly clarify the
controversy on intermittent synchronization. In this Rap
Communication, we propose a simple numerical scheme
determine whether the observed synchronization is accid
tal or genuine. With the help of this scheme, we are able
investigate the difference dynamics of unidirectiona
coupled pendula up to the 102308 order.

The motion of the master and the slave pendula are
scribed in a dimensionless form by the usual nonautonom
expression in the angular coordinatesum ,us :

üm1gu̇m1sinum5G0 cos~Vt !, ~1!

üs 1gu̇s 1sinus 5G0 cos~Vt !1c~sinus2sinum!,

where timet has been normalized in the unit ofv0
21, v0

being the small-angle resonant frequency of the pendulumg
is the damping coefficient,G0 is the amplitude of modula-
tions normalized by the pendulum critical torquemgl, the
drive frequencyV is expressed in units ofv0, andc is the
coupling strength. These nonautonomous equations ca
written as equivalent sets of autonomous coupled first-or
differential equations as follows:

u̇m5vm ,

v̇m52gvm2sinum1G0 cosfm , ~2!
©2001 The American Physical Society01-1
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ḟm5V, and

u̇s 5vs ,

v̇s 52gvs2sinus1G0 cosfs1c~sinus2sinum!, ~3!

ḟs 5V.

All the results that are presented in this paper were comp
with the same parameter values that were used in BB
study, i.e.,g50.2, G051.2, andV50.5. Both the maste
and the slave pendula are in a chaotic state in those pa
eter values. Numerical results are obtained with a fou
order Runge-Kutta routine with time grids of 0.001(2p/V).
When synchronization is achieved, the strange attractor
the slave exactly coincides with that of the master, and
synchronization manifoldM can be represented as (um
5us ,vm5vs ,fm5fs). In the absence of synchronizatio
the Poincare´ points move on the two attractors in an unco
related fashion. To measure the quality of synchronizat
we used the distance between a point on the master attr
and its corresponding point on the slave attractor in ph
space, such ash5$(us2um)21( u̇s2 u̇m)%1/2.

The conventional procedure for studies of numerical s
chronization of coupled flows is as follows:~i! Integrate six-
dimensional differential equations@Eqs. ~2! and ~3!# with
fourth order Runge-Kutta algorithm;~ii ! Calculateh to de-
termine the degree of synchronization. A drawback of t
conventional procedure is the phenomenon of hard lock
when h is within the precision limit of the calculation. In
order to avoid this difficulty, a small noise in the order of t
precision of the computer, i.e., seven digits for single pre
sion or 15 digits for double precision, is usually added
each variable at every Runge-Kutta step to perform the
merical study. However, the true dynamics of the system
be perturbed by this small added noise.

Here, we propose to study an equivalent set of equati
by transforming the slave equations to the equations of
ference motion between the master and the slave to circ
vent the hard locking problem, instead of adding noise. T
transformation of the variables,u5um2us , v5vm2vs ,
andf5fm2fs leads to the equations of difference motio
between the master and the slave as follows:

u̇5v,

v̇52gv22~12c!sinS u

2D cosS um2
u

2D , ~4!

ḟ50.

Then, the synchronization manifoldM corresponds to
(u,v,f)5(0,0,0) and the coordinates are taken in a dir
tion orthogonal toM. Notice that the transformation from th
variables (um ,vm ,fm ,us ,vs ,fs) to the variables
(um ,vm ,fm ,u,v,f) is a homeomorphism. We can solve
six-dimensional differential equations of the master syst
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and the difference dynamics, i.e., Eqs.~2! and ~4! whose
dynamics is identical to that of the original set of equatio

In order to compare the conventional method with o
scheme, we first calculate the transverse Lyapunov expo
~TLE! by studying the linearized equations of Eq.~4!. Figure
1 shows that the presence of the parameter regime,
0.795,c,1.0, in which the TLE is slightly negative. Th
TLE changes sign nearc50.795. So we choose two param
eter values, i.e.,c50.79 in which the TLE is slightly positive
andc50.80 in which the TLE is slightly negative, as our te
values. Then, we calculate the time series ofh for these two
parameter values both in the conventional method and in
scheme to compare the results.

Figure 2 shows the striking difference between the c
ventional method and our scheme. According to the conv
tional calculations@Figs. 2~a! and ~b!#, the measureh
abruptly goes to zero as the difference becomes less tha
digits, whether the TLE is slightly positive forc50.79 @Fig.
2~a!# or slightly negative forc50.80. @See Fig. 2~b!.# On the

FIG. 1. The TLEn is plotted against the coupling strengthc
~solid line!. The filled circles represent the average decay rates oh
vs time for whichc is in the negative TLE regime, which wel
approximates the TLE@Fig. 2~d!#.

FIG. 2. Time series ofh in log scale. The figures show th
striking difference between results from the conventional calcu
tions ~a! and ~b! and the calculation from our scheme~c! and ~d!.
The coupling strength for~a! and ~c! is c50.79 and~b! and ~d! is
c50.80.
1-2
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other hand, the calculations from our scheme@Figs. 2~c! and
2~d!# show that the dynamics can be studied until the m
sureh reaches up to the order of 102308 @14#. Figure 2~c!
shows the time series ofh lasts much longer than in Fig
2~a!, until it accidentally becomes less than 102308 for the
coupling strengthc50.79. This indicates the synchronizatio
observed in Fig. 2~a! is an accidental one. On the contrar
the h in Fig. 2~d! shows a consistent decreasing tenden
i.e., exponential decay, as time goes on. It can be unders
that the observed synchronization in Fig. 2~b!, by the con-
ventional method, is a genuine one. Moreover, in Fig. 2~d!,
we can estimate the TLE by measuring the average slop
the decay. The filled circles in Fig. 1. show the average de
rate ~the slope ofn versus time!, which well approximates
the TLE, asc varies.

As we mentioned previously, Longaet al.’s criterion give
good estimates for synchronization of coupled maps. Ho
ever, the calculation for coupled chaotic flows by using sy
bolic languages like Mathematica or Maple packages ta
an extremely long time. So the calculation of the avera
time taken for synchronization versus precision is practica
infeasible when we use symbolic packages.~It can be calcu-
lated with the algorithm in Ref.@16# within single and double
precision calculations!. In our scheme, on the other hand,
can be easily estimated. In Fig. 2~c!, we can measure th
time intervals of two adjacently located instant of time
which log10(h) reaches to the given digit@15# in time series
of log10(h), e.g., the arrows in Fig. 2~c! point log10(h)
reaches the dotted line, i.e., 30th digit. By taking an aver
of these time intervals, we can easily obtain the relation
tween average synchronization time and precision. Figu
shows the results of theexponentialrelation forc50.79 and
the linear relation for c50.80. So, according to Long
et al.’s criterion,we can conclude that the observed synch
nization for 0.80,c,1.0 in BBS’s pendula is genuine syn
chronization.

So far, we have illustrated that our scheme has vari
advantages over the conventional method for distinguish
the synchronizations. Even though we have concluded
coupled chaotic pendula can actually be synchronized
certain coupling strength regimes, the question that sm
additive noise might lead large intermittent bursts still
mains. This question motivates us to study the numer

FIG. 3. The average time taken for synchronization vs the p
cision of calculations forc50.79 ~filled circle! andc50.80 ~open
circle, inset!. The solid line is the best fitted exponential curve.
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effects of small additive noise on the system, since B
effectively added a small noise in their study. In order
investigate, we add noises of the order of 102100, 102200, and
102300 to the dynamics of difference motion of coupled ch
otic pendula for the coupling strengthc50.80. Remember
that actual synchronization is possible forc50.80. The typi-
cal behavior of the system is shown in Fig. 4~a!. Once the
dynamics reaches the order of noise level, the dynamics
casionally rebounds up to the order of 1064 times. This indi-
cates that the system could show intermittent bursts, no m
ter how small a noise is added. So we investigate
maximum bouncing height versus the coupling strengthc by
running the calculation up to 107 in a normalized time unit
when the added noise is of the amplitude of 102100. The
result is shown in Fig. 4~b! that represents the magnitude
the maximum rebounding of the trajectory~MMRT! for a
given noise amplitude, e.g., the applied noise of amplitu
102100 can lead to MMRT of the order 10234, for c50.8.
@See Fig. 4~b!#. This is the crucial difference betwee
coupled pendula and coupled logistic maps in which s
chronization is achieved, regardless of additive noise in c
tain coupling strength regime. In case of coupled chao
pendula, however, small added noises can have a big im
on their dynamics. This is the difficulty one can have
treating BBS type of systems.

Finally, we would like to comment that our scheme can
applied not only to coupled pendula, but also to gene
coupled chaotic oscillators like Lorenz, Ro¨ssler, Duffing,
forced Brusselator, etc. As an example, we show the resu
coupled Duffing oscillators in Fig. 5.

In conclusion, we have clarified the controversies co
cerned with BBS’s system by proposing a scheme to ca
late the dynamics of coupled chaotic flows. The scheme p
vides a very simple way to test whether the observ
synchronization is genuine or accidental. Using this sche
we are also able to study the effects of a small added n
on synchronization. Our results show thatthere exists a cer-
tain parameter interval in which the coupled pendula syst
is actually synchronized.This conclusion is based on Long

-
FIG. 4. The effects of added noise with varying amplitude in l

scale.~a! The amplitudes of added noise are of the order of 102100,
102200, and 102300, respectively, from top to bottom. Once the d
namics reaches the order of noise level, the dynamics occasio
rebounds up to the order of 1048 times in this system.~b! MMRT
when a noise of an amplitude of 102100 is added for 0.80,c,1.0.
1-3



e

RAPID COMMUNICATIONS

RIM, KIM, HWANG, PARK, AND KIM PHYSICAL REVIEW E 64 060101~R!
FIG. 5. Time series ofh in log scale for uni-
directionally coupled Duffing oscillators that ar

given by the following equations.ẍ10.25ẋ2x

1x350.3 cost and ẍ810.25ẋ82x81x83

50.3 cost1c(x2x8), where c is the coupling
strength.~a! For c520.755, log10h bursts inter-
mittently. ~b! For c520.770, log10h decreases
consistently.
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et al.’s criterion. It is consistent with the result of TLE ca
culation. Even though our conclusion may sound aga
BBS’s claim, we have also observed that BBS’s system
very sensitive to small additive noises, i.e., an extrem
small noise can lead to the very large bursts of the syst
Therefore, in a practical sense,intermittent synchronization
is a very reasonable way to define the BBS-type syste
Actually in a real environment, we may observe onlyinter-
mittent synchronizationin those systems as was reported
-
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BBS @17#. From this study, we have also found that Lon
et al.’s criterion is a very simple and effective way to distin
guish the genuineness of the observed synchronizatio
coupled chaotic flows, as well as in coupled maps.
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